Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.22.558930

ABSTRACT

Continued high levels spread of SARS-CoV-2 globally enabled accumulation of changes within the Spike glycoprotein, leading to resistance to neutralising antibodies and concomitant changes to entry requirements that increased viral transmission fitness. Herein, we demonstrate a significant change in ACE2 and TMPRSS2 use by primary SARS-CoV-2 isolates that occurred upon arrival of Omicron lineages. Mechanistically we show this shift to be a function of two distinct ACE2 pools based on cleavage or non-cleavage of ACE2 by TMPRSS2 activity. In engineered cells overexpressing ACE2 and TMPRSS2, ACE2 was cleaved by TMPRSS2 and this led to either augmentation or progressive attenuation of pre-Omicron and Omicron lineages, respectfully. In contrast, TMPRSS2 resistant ACE2 restored infectivity across all Omicron lineages through enabling ACE2 binding that facilitated TMPRSS2 spike activation. Therefore, our data support the tropism shift of Omicron lineages to be a function of evolution towards the use of uncleaved pools of ACE2 with the latter consistent with its role as a chaperone for many tissue specific amino acid transport proteins.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.06.22283000

ABSTRACT

The Omicron era of the COVID-19 pandemic commenced at the beginning of 2022 and whilst it started with primarily BA.1, it was latter dominated by BA.2 and related sub-lineages. Over the course of 2022, we monitored the potency and breadth of antibody neutralization responses to many emerging variants at two levels: (i) we tracked over 400,000 U.S. plasma donors over time through various vaccine booster roll outs and Omicron waves using antibody pools. (ii) we mapped the antibody response at the individual level using blood from strigently curated vaccine and convalescent cohorts. In pooled antibody samples, we observed the maturation of neutralization breadth to Omicron variants over time through continuing vaccine and infection waves. Importantly, in many cases we observed increased antibody breadth to variants that were yet to be in circulation. Resolution of viral neutralisation at the cohort level supported equivalent coverage across prior and emerging variants with emerging isolates BQ.1.1, XBB.1 and BR.2.1 the most evasive. Further, these emerging variants were resistant to Evusheld, whilst neutralization resistance to Sotrovimab was restricted to BQ.1.1 and further supported by lack of Spike glycoprotein binding to this variant. An outgrowth advantage through better utilization of TMPRSS2 was observed across BQ lineages and not those derived from BA.2.75. We conclude at this current point in time that variants derived from BQ lineages can evade antibodies at levels equivalent to their most evasive BA.2.75 counterparts but sustain an entry phenotype that would promote an additional outgrowth advantage.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267772

ABSTRACT

Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. Over this time global vaccine programs have been introduced, contributing to lowered COVID-19 hospitalisation and mortality rates, particularly in the first world. In late 2021, the Omicron (B.1.1.529) virus variant emerged, with significant genetic differences and clinical effects from other variants of concern (VOC). This variant demonstrated higher numbers of polymorphisms in the gene encoding the Spike (S) protein, and there has been displacement of the dominant Delta variant. We assessed the impact of Omicron infection on the ability of: serum from vaccinated and / or previously infected individuals; concentrated human IgG from plasma donors, and licensed monoclonal antibody therapies to neutralise virus in vitro. There was a 17 to 22-fold reduction in neutralisation titres across all donors who had a detectable neutralising antibody titre to the Omicron variant. Concentrated pooled human IgG from convalescent and vaccinated donors had greater breadth of neutralisation, although the potency was still reduced 16-fold. Of all therapeutic antibodies tested, significant neutralisation of the Omicron variant was only observed for Sotrovimab, with other monoclonal antibodies unable to neutralise Omicron in vitro. These results have implications for ongoing therapy of individuals infected with the Omicron variant.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL